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Abstract—The application of the Gershgorin circle theorem and some of its derivatives to
estimating matrix eigenvalues is considered. The obtained results are developed to design a
localization region for matrix eigenvalues with interval-indefinite constant and non-stationary
elements. The concept of e-circles is introduced to obtain more accurate estimates of these
regions than when using Gershgorin circles. The obtained results are applied to the stability
analysis of network systems, where it is shown that the proposed methods allows one to analyze
a network with a much larger number of agents than when using methods for solving linear
matrix inequalities in CVX and Yalmip/SeDuMi, as well as the eig (for calculating matrix
eigenvalues) and lyap (for solving the Lyapunov equation) algorithms in MatLab. It is shown
that if the developed methods are applied not to the system itself, but to the result obtained
using the Lyapunov function method, then it is possible to study systems with matrices without
diagonal dominance. This allowed us to consider the modification of the Demidovich condition
for systems with non-stationary parameters and the design of the control law for non-stationary
systems with matrices without diagonal dominance. All the obtained results are illustrated by
numerical modeling.
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1. INTRODUCTION

When analyzing the properties of dynamic systems and design of the control law, one of the key
questions is whether the system is stable. Currently, various methods and approaches are used to
determine stability: calculating the eigenvalues of the matrix [1], various algebraic and frequency
stability criteria [1], the Lyapunov function method [1], divergent methods for studying stability [2],
etc.

This paper focuses on design the localization domain of the eigenvalues of matrices with the
application of the obtained result to the analysis and design of control laws. To construct the
localization domain of the eigenvalues, the Gershgorin circle theorem [3–5] (hereinafter simply the
Gershgorin theorem) and some of its consequences will be considered, and new results will be
obtained on the generalization of this theorem to the case of parametrically indefinite matrices and
matrices with non-stationary parameters.

Gershgorin theorem and its various modifications have been repeatedly considered in the litera-
ture. The interest in this theorem is associated with a simple method for determining the domain
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of localization of eigenvalues. Gershgorin theorem often leads to the study of systems containing
matrices with diagonal dominance. In particular, such systems were studied in [6–8] and were
called super-stable (if all Gershgorin circles are entirely in the left half-plane of the complex plane).
It is shown that the analysis and design of control laws leads to linear programming problems.
In [9–13], refinement of localization regions is obtained in the form of averaged estimates, using
l1 vector norms, etc., and in [14, 15], a design of static linear control laws using Gershgorin the-
orem is proposed. In [16–18], the application of Gershgorin theorem to the study of the stability
of models in the chemical industry, models of electrical networks with three-phase generators, and
biological models of epidemics is considered.

An analysis of the literature showed that when determining a localization region for the eigen-
values of matrices, Gershgorin theorem has advantages in the simplicity of its application, a convex
procedure for finding the localization region, and low computational costs. However, limitations
in the application of this theorem are associated with overestimated estimates of the localization
region and consideration of matrices with diagonal dominance (or reduced to them using a diago-
nal matrix for transforming the basis). The requirement of diagonal dominance is also significantly
restrictive in the design of the control law.

This paper will consider the solution of the following problems:

(1) estimates and localization regions of the eigenvalues of a constant matrix will be considered;

(2) localization regions of the eigenvalues of a matrix with interval parametric uncertainty will be
obtained;

(3) the following will be considered as examples of application of the obtained results:

(a) the problem of synchronization of network systems with a large number of scalar agents,
where it will be shown that the proposed results can be applied to the stability analysis
of a much larger number of agents than when using the methods for solving linear
matrix inequalities in CVX and Yalmip/SeDuMi, as well as the eig (for calculating the
eigenvalues of a matrix) and lyap (for solving the Lyapunov equation) algorithms in
MatLab;

(b) modification of the Demidovich condition (on the stability of linear systems with non-
stationary parameters [19](Theorem 6.1), [23]) to systems with interval-uncertain non-
stationary parameters and with the matrix of the original system without diagonal dom-
inance;

(c) the problem of finding a matrix in a linear control law using linear matrix inequalities
for objects with a matrix without diagonal dominance.

The following notations are used in the paper: C is the set of complex numbers, R
n is the

n-dimensional Euclidean space with the vector norm | · |, Rn×m is the set of all real matrices of
dimension n × m with the induced matrix norm ‖Q‖, λi{Q} is the ith eigenvalue of the square
matrix Q, �{λi{Q}} is the real part of the ith eigenvalue of the square matrix Q, �{λi{Q}} is
the imaginary part of the ith eigenvalue of the square matrix Q, I is the identity matrix of the
corresponding order, the matrix Q ∈ R

n×m will also be denoted as (qij), i = 1, . . . , n, j = 1, . . . ,m.

2. ESTIMATES OF THE LOCALIZATION DOMAIN OF EIGENVALUES

2.1. Constant Matrices

In this section, estimates will be obtained for the localization region of the eigenvalues of the
matrix Q = (qij) ∈ R

n×n with constant elements. To clarify these estimates, the diagonal matrices
D = diag{d1, . . . , dn} and H = diag{h1, . . . , hn} will be additionally considered. Let us introduce
the notation of sums over rows and columns of absolute values of elements of matrices Q, D−1QD
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GENERALIZATION OF GERSHGORIN CIRCLE THEOREM 501

and H−1QH without diagonal elements in the form

Ri(Q) =
n∑

j=1,j �=i

|qij |, Cj(Q) =
n∑

i=1,i �=j

|qij|,

RD
i (Q) =

n∑
j=1,j �=i

dj
di
|qij|, CD

j (Q) =
n∑

i=1,i �=j

di
dj

|aij |,

RH
i (Q) =

n∑
j=1,j �=i

hj
hi

|qij|, CH
j (Q) =

n∑
i=1,i �=j

hi
hj

|aij |.

Below are two lemmas that allow one to obtain lower and upper bounds on the real parts of the
eigenvalues of the matrix Q.

Lemma 1. Consider the matrix Q ∈ R
n×n. There exist di > 0, hi > 0, i = 1, . . . , n such that the

following estimates hold:

max
i

{�{λi{Q}}} � σD
max{Q} � σmax{Q},

min
i
{�{λi{Q}}} � σH

min{Q} � σmin{Q},
(1)

where

σmax(Q) = min
{
max

i
{qii +Ri(Q)},max

j
{qjj + Cj(Q)}

}
,

σmin(Q) = max
{
min
i
{qii −Ri(Q)},min

j
{qjj − Cj(Q)}

}
,

σD
max(Q) = min

D

{
max

i
{qii +RD

i (Q)},max
j

{qjj + CD
j (Q)}

}
,

σH
min(Q) = max

H

{
min
i
{qii −RH

i (Q)},min
j

{qjj − CH
j (Q)}

}
.

(2)

Proof. By Gershgorin theorem [4] all eigenvalues of Q are contained in the union of n circles

∪n
i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

|qij|
}
. Since QT has the same eigenvalues as Q, all eigenvalues of

Q are also contained in the union of n circles ∪n
i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

|qji|
}
. Therefore,

σmin{Q} � min
i
{�{λi{Q}}} and σmax{Q} � max

i
{�{λi{Q}}}.

Now consider the diagonal matrix D = diag{d1, . . . , dn}. It is known that the eigenvalues of
the matrices D−1QD and Q do not change. However, by varying the coefficients di, the radii

of the Gershgorin circles for the matrix Q can be changed in the form ∪n
i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

dj
di
|qij|

}
and for the matrix QT in the form ∪n

i=1

{
z ∈ C : |z − qii| �

n∑
j=1,j �=i

di
dj
|qji|

}
. There-

fore, there exist di > 0, i = 1, . . . , n such that σD
max{Q} � σmax{Q}. However, it is impossible to

simultaneously decrease the radii of all circles by varying di, i.e. when the radii of some circles
decrease, the radii of others increase. Therefore, to obtain the estimate σH

min{Q} � σmin{Q}, the
matrix H is used instead of D.
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Lemma 2. Consider the matrix Q ∈R
n×n. There exist di > 0, hi > 0, i= 1, . . . , n and α, β ∈ [0, 1]

such that the following estimates hold:

max
i

{�{λi{Q}}} � σD,α
max{Q} � σα

max{Q},

min
i
{�{λi{Q}}} � σH,β

min{Q} � σβ
min{Q},

(3)

where

σα
max(Q) = min

α

{
max

i
{qii + [Ri(Q)]α[Ci(Q)]1−α}

}
,

σβ
min(Q) = max

β

{
min
i
{qii − [Ri(Q)]β [Ci(Q)]1−β}

}
,

σD,α
max(Q) = min

D,α

{
max

i
{qii + [RD

i (Q)]α[CD
i (Q)]1−α}

}
,

σH,β
min (Q) = max

H,β

{
min
i
{qii − [RH

i (Q)]β [CH
i (Q)]1−β}

}
.

(4)

Proof. According to Ostrovsky theorem [4], all eigenvalues of the matrix Q are contained in

the union of n circles ∪n
i=1

⎧⎨⎩z ∈ C : |z − qii| �
[

n∑
j=1,j �=i

|qij |
]α [

n∑
j=1,j �=i

|qji|
]1−α

⎫⎬⎭. Therefore, there

exists α such that σα
max{Q} � max

i
{�{λi{Q}}}. Analogously, we obtain that there exists β such

that σβ
min{Q} � min

i
{�{λi{Q}}}.

By varying the coefficients di, the radii of the circles can be changed ∪n
i=1

{
z ∈ C : |z − qii| �[

n∑
j=1,j �=i

dj
di
|qij |

]α [
n∑

j=1,j �=i

dj
di
|qji|

]1−α
⎫⎬⎭. Consequently, there exist di, i = 1, . . . , n and α such that

σD,α
max{Q} � σα

max{Q}. From similar reasoning it follows that there exist hi, i = 1, . . . , n and β such

that σH,β
min{Q} � σβ

max{Q}.
Corollary 1. If any upper bound in Lemmas 1 and 2 takes a negative value, then it is an estimate

of the degree of stability, the concept of which was introduced by Ya.Z. Tsypkin and P.V. Bromberg
in [20].

Corollary 2. From the proofs of Lemmas 1 and 2 it also follows that by the intersection of the
corresponding circles one can find the domain of localization of the eigenvalues of the matrix Q,
from which one can find not only upper and lower bounds for the real parts of the eigenvalues, but
also an upper bound for the imaginary part, which we denote as �̂{Q} � max

i
{�{λi{Q}}}. The

value of �̂{Q} is defined as the maximum value of the intersection of the circles along the imaginary
axis. If the upper bound on the real part of the eigenvalue of Q is negative, then one can obtain

an estimate of the oscillation μ in the form μ � μ̂ := �̂{Q}
|max

i
{�{λi{Q}}}| . It is well known [1] that the

oscillation is used to estimate the overshoot Π in the form Π � eπ/μ. Then the new estimate of the
degree of overshoot is defined as Π � eπ/μ̂.

Knowing the estimate of the degree of stability, the estimate of oscillation and the lower estimate
of the real part of the eigenvalue, we can construct a majorant and a minorant for the transient
process of a linear system under a single step action, which is a development of the results of
S.A. Chaplygin, N.N. Luzin, A.A. Feldbaum and A.M. Rubinchik [21, 22].

The Corollaries 1 and 2 will also be true in further generalizations of the obtained results to
perturbed matrices. Let us demonstrate what was noted in the lemmas and corollaries using the
following example.
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Fig. 1. Localization regions (gray region) of eigenvalues of matrix Q using estimates (1) and (3).

Example 1. Consider the matrix Q =

[
−1 −2.5
−0.5 −2

]
, which eigenvalues are −1.5± i. Figure 1

shows the localization regions (highlighted in gray) using:

• Gershgorin circle theorem (Fig. 1a);

• Lemma 1 with H = diag{1; 0.48} and D = diag{1; 2.08} (Fig. 1b);

• Lemma 2 with α = β = 0.23 and D = H = I (Fig. 1c);

• Lemma 2 with α = β = 0.01, H = diag{1; 0.51} and D = diag{1; 1.96} (Fig. 1d);

The solid circles correspond to the circles which radii are calculated from the rows of the matrix,
the dashed circles correspond to the columns of the matrix.

Table 1 contains upper and lower bounds for the real part of the eigenvalue of the matrix Q. The
accuracy is calculated as the relative error between the corresponding estimate and �{λ{Q}} =

−1.5 (e.g. |−3.5+1.5|
1.5 100% = 133.3%).

Table 1. Estimates of the real part of the eigenvalues of the matrix Q,
obtained using (1) and (3)

Figure Estimate of �{λ{Q}} Accuracy, %

Fig. 1a σmin(Q) = −3.5; σmax(Q) = 0.5 133.3

Fig. 1b σH
min(Q) = −2.72; σD

max(Q) = −0.27 82

Fig. 1c σβ
min(Q) = −2.72; σα

max(Q) = −0.27 82

Fig. 1d σH,β
min (Q) = −2.26; σD,α

max(Q) = −0.73 51.3

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



504 FURTAT

From Fig. 1 one can find estimates of the imaginary part, which are reflected in Table 2. The
accuracy is calculated as the relative error between the corresponding estimate and �{λ{Q}} = 1.

Table 2. Estimates of the imaginary part of the eigenvalues obtained
using Lemmas 1 and 2

Figure Estimate of �{λ{Q}} Accuracy, %

Fig. 1a 2.3 130

Fig. 1b 1.8 80

Fig. 1c 1.7 70

Fig. 1d 1.2 20

The best estimates of the real and imaginary parts are guaranteed by the result of Lemma 2,
where the variable parameters D, H, α and β are used simultaneously.

2.2. Perturbed Matrices

In this section, we consider the search for the regions of localization of eigenvalues for matrices
with interval-indefinite parameters:

Q(t) = Q0 +ΔQ(t) ∈ R
n×n,

Q0 = (q0ij), ΔQ(t) = (Δqij(t)),

Δq
ii
� Δqii(t) � Δqii, |Δqij(t)| � mij for i �= j.

(5)

Since the matrix elements can take any values from the admissible intervals, instead of the circles
of localization of the eigenvalues considered in the proofs of Lemmas 1 and 2, we introduce the
following figure into consideration.

Definition 1. The figure formed by the union of the circles EC = ∪q∈[q;q]
{
z ∈ C : |z− q| � R

}
is

called the e-circle.

We introduce notations for upper bounds of the sums over rows and columns of the absolute
values of the elements of the matrices Q(t), D−1Q(t)D and H−1Q(t)H, excluding the diagonal
elements, in the form

R̂i(Q) =
n∑

j=1,j �=i

(|q0ij |+mij), Ĉj(Q) =
n∑

i=1,i �=j

(|q0ij |+mij),

R̂D
i (Q) =

n∑
j=1,j �=i

dj
di
(|q0ij |+mij), ĈD

j (Q) =
n∑

i=1,i �=j

di
dj

(|q0ij |+mij),

R̂H
i (Q) =

n∑
j=1,j �=i

hj
hi

(|q0ij |+mij), ĈH
j (Q) =

n∑
i=1,i �=j

hi
hj

(|q0ij|+mij).

Now we will consider the generalization of Lemmas 1 and 2 to the case of matrices with interval-
indefinite elements. Below, in the formulations of the lemmas, we will omit the dependence of
matrices and parameters on t for the sake of simplifying the expressions.

Lemma 3. The eigenvalues of the matrix Q from (5) are in the intersection region of the e-circles

ECrow ∩ ECcol, (6)
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where

ECrow = ∪n
i=1ECrow,i,

ECrow,i = ∪Δqii∈[Δq
ii
;Δqii]

{
λ ∈ C : |λ− q0ii −Δqii| � R̂i(Q)

}
,

(7)

ECcol = ∪n
j=1ECcol,j ,

ECcol,j = ∪Δqjj∈[Δq
jj
;Δqjj ]

{
λ ∈ C : |λ− q0jj −Δqjj| � Ĉj(Q)

}
.

(8)

Proof. Let λ(t) be an eigenvalue of the matrix Q(t) and s(t) = col{s1(t), . . . , sn(t)} be the
eigenvector corresponding to this eigenvalue. Choose the ith component of the vector s(t) such
that sup{si(t)} � max{sup{s1(t)}, . . . , sup{si−1(t)}, sup{si+1(t)}, . . . , sup{sn(t)}}. Denote s̄i =
sup{si(t)}. From the relation λ(t)s(t) = Q(t)s(t) we write out the expression for the ith coordinate

in the form λ(t)si(t) =
n∑

j=1
qij(t)s(t) or (λ(t)− qii(t))si(t) =

n∑
j=1,j �=i

qij(t)s(t). Using the triangle

inequality, we consider the estimate

|λ(t)− qii(t)||si(t)| =

∣∣∣∣∣∣
n∑

j=1,j �=i

qij(t)sj(t)

∣∣∣∣∣∣
�

n∑
j=1,j �=i

|qij(t)sj(t)| �
n∑

j=1,j �=i

|qij(t)||sj(t)| � s̄i

n∑
j=1,j �=i

|qij(t)|.
(9)

Let us rewrite the expression (9) as |λ(t)− qii(t)||si(t)| − s̄i
n∑

j=1,j �=i
|qij(t)| � 0 or in the form

s̄i

⎛⎝|λ(t)− qii(t)|
|si(t)|
s̄i

−
n∑

j=1,j �=i

|qij(t)|

⎞⎠ � 0. (10)

Since |si(t)|
s̄i

� 1, then the expression (10) will be satisfied if inequality holds

|λ(t)− qii(t)| �
n∑

j=1,j �=i

|qij(t)|. (11)

Since Δq
ii
� Δqii(t) � Δqii and |Δqij(t)| � mij for i �= j, then we rewrite the inequality (11) as an

e-circle ECrow,i from (7).

The relation (7) is satisfied for some i. Since it is unknown which i corresponds to a given λ(t),
we can only say that λ(t) belongs to the union of e-circles ECrow = ∪n

i=1ECrow,i. This means that
all eigenvalues of the matrix Q(t) are contained in the union of e-circles ECrow.

Since the matrix QT(t) has the same eigenvalues as the matrix Q(t), then all eigenvalues of the
matrix Q(t) are contained in the union of e-circles ECcol = ∪n

j=1ECcol,j, see (8). Further reasoning

for the matrix QT(t) is similar to that for the matrix Q(t). Since the eigenvalues of the matrix Q(t)
are simultaneously in ECrow and ECcol, they are in the domain (6).

Lemma 4. Let di > 0, hi > 0, i = 1, . . . , n be given. The eigenvalues of the matrix Q from (5)
are in the intersection region of the e-circles

ECD
row ∩ ECH

col,
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where

ECD
row = ∪n

i=1ECD
row,i,

ECD
row,i = ∪Δqii∈[Δq

ii
;Δqii]

{
λ ∈ C : |λ− q0ii −Δqii| � R̂D

i (Q)
}
,

ECH
col = ∪n

j=1ECH
col,j,

ECH
col,j = ∪Δqjj∈[Δq

jj
;Δqjj ]

{
λ ∈ C : |λ− q0jj −Δqjj| � ĈH

j (Q)
}
.

Proof. The results of Lemma 4 follow from Lemma 3 and the fact that the eigenvalues of the
matrices D−1Q(t)D, H−1Q(t)H, and Q(t) are the same.

Lemma 5. Let di > 0, i = 1, . . . , n and α ∈ [0; 1] be given. The eigenvalues of the matrix Q
from (5) are in the intersection region of the e-circles

ECD,α = ∪n
i=1EC

D,α
i ,

where

ECD,α
i = ∪Δqii∈[Δq

ii
;Δqii]

{
λ ∈ C : |λ− qii −Δqii| � [R̂D

i (Q)]α[ĈD
i (Q)]1−α

}
.

Proof. The proof of Lemma 5 follows from the proofs of Lemmas 2 and 3 and the fact that the
eigenvalues of the matrices D−1Q(t)D and Q(t) are the same.

Corollary 3. Similarly to Lemmas 1 and 2, one can write out estimates for the maximum and
minimum values of the eigenvalues of the matrix Q using the results of Lemmas 3–5, i.e. there exist
numbers di > 0, hi > 0, i = 1, . . . , n and α, β ∈ [0; 1] such that the following estimates are valid:

max
i

{
sup
t
{�{λi{Q(t)}}}

}
� σD

max{Q(t)} � σmax{Q(t)},

min
i

{
sup
t
{�{λi{Q(t)}}}

}
� σH

min{Q(t)} � σmin{Q(t)},

max
i

{
sup
t
{�{λi{Q(t)}}}

}
� σD,α

max{Q(t)} � σα
max{Q(t)},

min
i

{
sup
t
{�{λi{Q(t)}}}

}
� σH,β

min{Q(t)} � σβ
min{Q(t)},

(12)

where

σmax(Q(t)) = min
{
max

i
{q0ii +Δqii + R̂i(Q)},max

j
{q0jj +Δqjj + Ĉj(Q)}

}
,

σmin(Q(t)) = max
{
min
i
{q0ii −Δqii − R̂i(Q)},min

j
{q0jj −Δqjj − Ĉj(Q)}

}
,

σD
max(Q(t)) = min

D

{
max

i
{q0ii +Δqii + R̂D

i (Q)},max
j

{q0jj +Δqjj + ĈD
j (Q)}

}
,

σH
min(Q(t)) = max

H

{
min
i
{q0ii −Δqii − R̂H

i (Q)},min
j

{q0jj −Δqjj − ĈH
j (Q)}

}
,

σα
max(Q(t)) = min

α

{
max

i
{q0ii +Δqii + [R̂i(Q)]α[Ĉi(Q)]1−α}

}
,

σβ
min(Q(t)) = max

β

{
min
i
{q0ii −Δqii − [R̂i(Q)]β [Ĉi(Q)]1−β}

}
,

σD,α
max(Q(t)) = min

D,α

{
max

i
{q0ii +Δqii + [R̂D

i (Q)]α[ĈD
i (Q)]1−α}

}
,

σH,β
min (Q(t)) = max

H,β

{
min
i
{q0ii −Δqii − [R̂H

i (Q)]β [ĈH
i (Q)]1−β}

}
.
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Fig. 2. Localization regions (gray region) of eigenvalues of perturbed matrices Q and Q(t).

Example 2. Consider two parametrically indefinite matrices Q with constant and variable pa-
rameters in the forms

Q =

[
−1 0
0 −1.5

]
+

[
r11 2r12
3r21 4r22

]
︸ ︷︷ ︸

ΔQ

,

Q(t) =

[
−1 0
0 −1.5

]
+

[
sin(t) 2 cos(1.5t)

3sgn(sin(2t)) 4sgn(cos(1.7t))

]
︸ ︷︷ ︸

ΔQ(t)

,

where rij , i, j = 1, 2 are pseudorandom numbers uniformly distributed over the interval (−1; 1).
Let us consider 100 realizations for each rij . The matrices ΔQ and ΔQ(t) have the same mij, so
the estimates of the localization region will be the same.

Figure 2 shows the localization region of the eigenvalues of Q and Q(t) using the results of
Lemmas 3–5 (gray regions), where small circles and triangles represent the eigenvalues of the
matrix Q with constant parameters, and continuous and dashed lines (inside the gray regions)
represent the eigenvalues of the matrix Q with non-stationary parameters. In three out of four
figures, the pairs of e-circles coincided due to the variation of di, hi, α, and β, so only two e-circles
are shown in three figures. The corresponding figures were obtained using:

• Lemma 3 (Fig. 2a);

• Lemma 4 with D = diag{1; 1.23} and H = diag{1; 0.81} (Fig. 2b);

• Lemma 5 with α = β = 0.5 and D = H = I (Fig. 2c);

• Lemma 5 with α = 0.5 and D = diag{1; 0.52} (Fig. 2d).
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The solid boundary of the e-circles corresponds to the figures composed along the rows of the
matrix, and the dotted boundary corresponds to the figures composed along the columns of the
matrix.

3. CONTROL SYSTEM STABILITY ANALYSIS

This section will consider several applications of the results of the previous section to the analysis
and design of control systems.

3.1. Synchronization of Network Systems

Consider a network system consisting of n interconnected agents of the form

ẋi =
n∑

j=1

qijxj + ui, i = 1, . . . , n, (13)

where xi ∈ R, ui ∈ R is the control signal, |qij| � mij. It is required to ensure that the condition
lim
t→∞

xi(t) = 0 is satisfied for all xi by choosing ui, i = 1, . . . , n.

Let us define the control laws

ui = −qxi, i = 1, . . . , n, (14)

where q > 0.

Use the following notations: x = col{x1, . . . , xn}, Q0 = −qI, ΔQ = (qij) and Q = Q0 +ΔQ.
Then (13) and (14) can be rewritten as

ẋ = Qx. (15)

As a result, checking the condition lim
t→∞

xi(t) = 0 is reduced to checking the stability of the matrix

Q0 +ΔQ, which can be ensured by an appropriate choice of q in (14).

Let q = −103 and qij be pseudorandom numbers uniformly distributed over the interval (−1; 1).

To analyze the stability of the matrix Q0 +ΔQ, we use:

• functions eig (calculating the eigenvalues of a matrix) and lyap (solving the Lyapunov equation)
in MatLab, assuming that qij are known;

• applications to solving the linear matrix inequalities CVX and Yalmip/SeDuMi, assuming qij
to be known;

• Lemma 1 (calculating σmax{Q}) and Lemma 2 (calculating σα
max{Q} with an exhaustive search

of α from 0 to 1 with a step of 0.1), assuming qij to be known;
• Corollary 3 (calculating σα

max{Q} with an exhaustive search of α from 0 to 1 with a step of
0.1), assuming qij to be unknown, but with known mij.

Figure 3 shows the graphs of the time spent on the operation to determine the stability of
Q0 +ΔQ depending on the dimension of the matrix (the number of agents in the network) and
using the corresponding method. Regardless of whether the corresponding method indicated that
the matrix Q is stable or unstable, the corresponding time was recorded to clarify this issue. The
calculations were performed in Matlab R2021b on a PC with an AMD Ryzen 5 PRO 4650U proces-
sor with Radeon Graphics 2.10 GHz and 8 GB of RAM. The results for CVX and Yalmip/SeDuMi,
as well as for Lemma 2 and Corollary 3 were almost identical, so their graphs in Fig. 3 matched
in pairs. We also note that when analyzing the proposed results, the maximum calculation time
was not reached due to the fact that Matlab R2021b did not generate a matrix with a dimension
greater than 25 000.
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Fig. 3. Dependence of time spent on determining the stability of the system (matrix Q) on the number of
agents in the network (n).

Conclusions:

• eig, lyap, CVX and Yalmip/SeDuMi algorithms provide a more accurate result in determining
stability (they provide a smaller error in the deviation of the obtained solution from the true
value) compared to the proposed estimates;

• the time spent on clarifying the stability issue when using CVX and Yalmip/SeDuMi increases
significantly (to a lesser extent when using eig and lyap) with an increase in the number of
agents in the network, while the proposed results are the least time-consuming in terms of
calculation.

The closed-loop system (15) contains a matrix with diagonal dominance. In [6–18], where
matrices with diagonal dominance were also used, it was noted that this is a rather narrow class
of systems under study. In the following sections, we will show that the proposed results can
be applied to systems with matrices without diagonal dominance. Diagonal dominance will be
presented to expressions obtained using the apparatus of Lyapunov functions.

3.2. Stability Analysis of Linear Non-Stationary Systems with Interval-Uncertain Parameters
and Matrices without Diagonal Dominance

In this section, we will consider a modification of the Demidovich theorem [19, Theorem 6.1;
23] (the term “Demidovich condition” is also used in the literature) on the study of the stability
of linear systems with known non-stationary parameters in the case of interval uncertainty and the
presence of external disturbances. Let the system be represented by the equation

ẋ(t) = A(t)x(t) + F (t)f(t), (16)

where t � 0, x ∈ R
n is the state vector, f ∈ R

l is an external signal such that sup{|f(t)|} � f̄ ,
F (t) ∈ R

n×l and A(t) = (aij(t)) ∈ R
n×n are such that sup{‖F (t)‖} � F̄ , A(t) = A0 +ΔA(t),

A0 = (a0ij), ΔA(t) = (Δaij(t)), Δaii � Δaii(t) � Δaii and |Δaij(t)| � mij for i �= j and for all t.
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Let us introduce the matrix Ā(t), where

Ā(t) = A(t) +AT(t) = Ā0 +ΔĀ(t),

Ā0 = (ā0ij) = (a0ij + a0ji),

ΔĀ(t) = (Δāij(t)) = (Δaij(t) + Δaji(t)),

2Δaii � Δāii(t) � 2Δaii,

|Δāij(t)| � mij +mji at i �= j.

(17)

Note that the system (16) contains a matrix A(t) without diagonal dominance. As will be shown
in the theorem below, diagonal dominance will be needed in the matrix Ā(t).

According to Demidovich theorem [19, Theorem 6.1; 23], the system (16) is asymptotically
stable for f(t) ≡ 0 and with a known matrix A(t) if the eigenvalues of the matrix A(t)+AT(t) take
negative values for all t. Next, we consider a generalization of this theorem to interval indefinite
matrices, taking into account the Corollary 3.

Theorem 1. Denote by σ any upper bound calculated using (12) for the eigenvalues of the ma-
trix Ā(t) in (17). If σ < 0, then the following bound holds:

|x(t)| � −2‖F̄‖f̄
σ

+ Ce0.5σt, (18)

where C = max
{
0, |x(0)| + 2‖F̄‖f̄

σ

}
.

Proof. We choose the Lyapunov function

V = xTx (19)

and find its derivative along the solutions (16) in the form

V̇ = xTĀ(t)x+ 2xTF (t)f.

Let us find the upper estimate

V̇ � σxTx+ 2|x|‖F (t)‖|f | � σV + 2
√
V ‖F̄‖f̄ . (20)

We solve the inequality (20) in the form

√
V � −2‖F̄‖f̄

σ
+

(√
V (0) +

2‖F̄‖f̄
σ

)
e0.5σt. (21)

Taking into account (19), we obtain

|x(t)| � −2‖F̄‖f̄
σ

+

(
|x(0)| + 2‖F̄‖f̄

σ

)
e0.5σt. (22)

The expression (22) yields the result (18).

Example 3. A system with constant parameters and a matrix without diagonal dominance.

Consider the system (16) with parameters A =

[
−1 3
−2.5 −2

]
, B = [0 0.05]T and u = sin(t). The

matrix A is not superstable [6–8] or diagonally dominant [4, 9–18] either in rows or in columns.
There are also no d1 > 0 and d2 > 0 for the conditions (2) to be satisfied, since the inequalities
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d1 − 3d2 > 0 and −2.5d1 + 2d2 > 0, composed for the matrix A, and the inequalities d1 − 2.5d2 > 0
and −3d1 + 2d2 > 0, composed for the matrix AT, have no solution.

Consider the matrix Ā = A+AT =

[
−2 0.5
0.5 −4

]
. The condition (2) will be satisfied for Ā, where

σ = σmax(Ā) = −1.5. The largest eigenvalue of the matrix A + AT is −1.88. If we use another
condition in (2) with d1 = 1 and d2 = 0.711, then the eigenvalue estimate can be improved to
σ = σD

max(Ā) = −1.6445.

Example 4. A system with non-stationary parameters with a matrix without diagonal dominance.
Consider the system (16) with parameters with A(t) = A0+ΔA(t), where A0 = A from the previous

example, ΔA(t) = 0.1

[
sin(t) cos(t)
sin(2t) sin(4t)

]
. The upper bounds (17) give negative values, therefore, the

system (16) is stable.

3.3. Control Law Design for Linear Systems with Matrices without Diagonal Dominance

Consider the system

ẋ(t) = A(t)x(t) +B(t)u(t) + F (t)f(t), (23)

where u ∈ R
m is the control signal, B(t) ∈ R

n×m, B(t) = b(t)B0, b � b(t) � b ∈ R, B0 is a known
matrix, the pair (A(t), B(t)) is controllable for all t. The remaining notations are as in (16). Assume
that the parameters ΔA(t), b(t), F (t) and f(t) are unknown.

Introduce the control law

u = Kx, (24)

where K ∈ R
m×n. Below we formulate theorems that allow us to calculate the matrix K that

ensures the stability of the closed-loop system

ẋ(t) = (A(t) +B(t)K)x(t) + F (t)f(t). (25)

Note that neither the matrix A(t) nor the matrix A(t)+B(t)K requires the diagonal dominance
property to be satisfied.

Theorem 2. Let the matrices A, B, and F in (23) be known and constant, and let for the given
α > 0 there exist the matrix Q = QT and the coefficient β > 0 such that the following conditions
are satisfied:

Ψii < 0,

Ψij � 0 for i �= j, i, j = 1, . . . , n,

σ(Q) > 0,

(26)

where

Ψ = (Ψij) := QAT +AQ+ Y TBT +BY + αQ+ βFTF, (27)

σ(Q) is one of the lower bounds for the eigenvalues of matrix Q, obtained using (2), as well as
K = Y Q−1 and P = Q−1. Then for the solutions of the system (25) the following estimate will be
valid

|x(t)| �
[

1

λmin(P )

(
f̄2

αβ
+Ke−αt

)]0.5
, (28)

where K = max
{
0, x(0)TPx(0)− f̄2

αβ

}
.
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Proof. We choose the Lyapunov function

V = xTPx, (29)

where P = Q−1, and find its time derivative along the solutions (25):

V̇ = xT[(A+BK)TP + P (A+BK)]x+ 2xTFf. (30)

Denoting z = col{x, f} and substituting (29) and (30) into the exponential stability condition
V̇ + αV + γfTf < 0, γ = 1/β, we obtain

zT
[
(A+BK)TP + P (A+BK) + αP PF

� −γI

]
z < 0. (31)

According to [24], the inequality (31) will be satisfied if the following condition is satisfied:[
(A+BK)TP + P (A+BK) + αP PF

� −γI

]
< 0. (32)

Using Schur lemma [24] and the fact that γ = 1/β, we rewrite (32) as

(A+BK)TP + P (A+BK) + αP + βPFTFP < 0. (33)

Multiplying (33) on the left and right by Q−1 and replacing Y = KQ, we get

Ψ := QAT +AQ+ Y TBT +BY + αQ+ βFTF < 0. (34)

According to Lemmas 1 and 2, the eigenvalues of the symmetric matrices Ψ and Q will be
negative and positive, respectively, if the inequalities (26) are satisfied. On the other hand, ac-
cording to [4] (Theorem 7.2.1), a Hermitian matrix is positive (negative) definite if and only if all
its eigenvalues are positive (negative). Therefore, the conditions Ψ < 0 and Q > 0 will be satisfied
if the inequalities (26) are satisfied. The estimate (28) follows from the solution of the inequality
V̇ + αV + γfTf < 0 taking into account (29) and the estimate λmin{P}|x|2 � xTPx.

Using the results of Theorem 2, we formulate the following theorem for systems with unknown
non-stationary parameters.

Theorem 3. Consider the system (23) with non-stationary parameters. Let there exist the matrix
Q = QT and the coefficient β > 0 such that the conditions hold

Φii < 0,

Φij � 0 for i �= j,

σ(Q) > 0,

(35)

at the vertices |Δaij(t)| � mij and b � b(t) � b, where

Φ = (Φij) := QAT
0 +A0Q+QΔAT(t) + ΔA(t)Q+ b(t)Y TBT

0 + b(t)B0Y + αQ+ βF̄ 2I,

σ(Ψ) is one of the upper bounds of the matrix Ψ, obtained using (12), and also K = Y Q−1 and
P = Q−1. Then for solutions of the system (25) the estimate (28) will be valid.
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Fig. 4. The transients of |x(t)| and u(t) for the proposed algorithm (solid curves) and the algorithm [25]
(dashed curves).

Proof. We will use the results (29)–(34) from the proof of Theorem 2 taking into account
non-stationary parameters. Since A(t) = A0 +ΔA(t), B(t) = b(t)B0 and ‖F (t)‖ � F̄ , then we
rewrite (34) as

Φ := QAT
0 +A0Q+QΔAT(t) + ΔA(t)Q+ b(t)Y TBT

0 + b(t)B0Y + αQ+ βF̄ 2I < 0.

If the conditions (35) are satisfied at the vertices |Δaij(t)| � mij and b � b(t) � b, then according
to [24] the condition (35) will be satisfied for any ΔA(t) and b(t) inside the polytope with vertices
|Δaij(t)| � mij and b � b(t) � b. The estimate (28) is obtained similarly to the proof of Theorem 2.

Example 5. Consider the system (23) with parameters A =

⎡⎢⎣0 1 0
0 0 1
1 2 3

⎤⎥⎦, B = col{0; 0; 1},

F = col{0.1; 0.5; 1} and f(t) = sin(t).

Obviously, the matrix A is without diagonal dominance, and the structure of the matrix B does
not allow the control law u = Kx with K ∈ R

1×3 to lead to the closed-loop system with a matrix
with diagonal dominance. Therefore, we use Theorem 2 to analyze the localization region of the
eigenvalues of the matrix Φ obtained as a result of applying the Lyapunov function method. Using
Theorem 2, we obtain K = col{−1.3671;−2.3619;−2.5724} and trace(P ) = 25.5858 for α = 1. Us-
ing [25], we obtain K = col{−2.8862;−4.9244;−3.2136} and trace(P ) = 40.631 for α = 1. In both
cases, the goal was trace(P ) → min for calculating K.

From Fig. 4 it is evident that in the steady state the value of |x(t)| of the proposed algorithm
is greater. However, the spike of |x(t)| and the amplitude of the control signal u(t) at the initial
moment of time are smaller, and the value of trace(P ) is also smaller.

4. CONCLUSION

The paper has described the application of the Gershgorin theorem and theorems derived from
it for estimating the localization domain of the eigenvalues of a matrix with constant and known
parameters. These results are generalized to estimate the localization domain for matrices with
parametric interval uncertainty. The concept of an e-circle is proposed, which allows obtaining
more accurate estimates of the localization domain than a direct application of the Gershgorin
theorem. The obtained results are applied to the control of network systems, where it is shown
that for large-dimensional problems, the proposed results are the least time-consuming in terms
of execution time compared to the eig and lyap procedures (commands in MatLab for finding the
eigenvalues of a matrix and solving the Lyapunov equation), as well as CVX and Yalmip/SeDuMi
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for solving linear matrix inequalities. A generalization of the Demidovich condition is proposed
for determining the stability of a non-stationary matrix. An approach has been developed for
calculating the matrix in a linear control law for control of linear systems where the property of
diagonal dominance for matrices in the closed-loop system is not fulfilled.
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